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Ore Polynomials, Definitions and examples

A a ring, S ∈ End(A), D a S-derivation:

D ∈ End(A,+) D(ab) = S(a)D(b) + D(a)b,∀a, b ∈ A.

For a ∈ A, La left multiplication by a.
In End(A,+), we then have : D ◦ La = LS(a) ◦ D + LD(a).

Define a ring R := A[t; S ,D]; Polynomials f (t) =
∑n

i=0 ai t
i ∈ R.

Degree and addition are defined as usual, the product is based on:

∀a ∈ A, ta = S(a)t + D(a).
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Examples

Examples

1) If S = id . and D = 0 we get back the usual polynomial ring
A[x ].

2) If a ∈ A Da(x) = xa− s(x)a defines a S-derivation.

3) R = C[t;S ] where S is the complex conjugation. If x ∈ C is
such that S(x)x = 1 then

t2 − 1 = (t + S(x))(t − x)

. On the other hand t2 + 1 is central and irreducible in R.

4) K a field, q ∈ K \ {0} and S ∈ EndK (K [x ]) defined by
S(x) = qx . R = K [x ][y ;S ]. Commutation rule: yx = qxy .
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properties

Facts Let K be a division ring.

a) Ore (1933): R = K [t;S ,D] is a left principal ideal domain.

b) Ore (1933): R = K [t;S ,D] is a unique factorization domain:
If f (t) = p1(t) . . . pn(t) = q1(t) . . . qm(t), pi (t), qi (t)
irreducible then m = n and there exists σ ∈ Sn such that,

For 1 ≤ i ≤ n,
R

Rqi
∼=

R

Rpσ(i)
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PLT

Definitions

Let A be a ring, S an endomorphism of A and D a S-derivation of
A. Let also V stand for a left A-module.

a) An additive map T : V −→ V such that, for α ∈ A and
v ∈ V ,

T (αv) = S(α)T (v) + D(α)v .

is called an (S ,D) pseudo-linear transformation (or a
(S ,D)-PLT, for short).

b) For f (t) ∈ R = A[t; S ,D] and a ∈ A, we define f (a) to be the
only element in A such that f (t)− f (a) ∈ R(t − a).
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Proposition

Let A be a ring S ∈ End(A) and D a S-derivation of A. For an
additive group (V ,+) the following conditions are equivalent:

(i) V is a left R = A[t; S ,D]-module;

(ii) V is a left A-module and there exists an (S ,D) pseudo-linear
transformation T : V −→ V ;

(iii) There exists a ring homomorphism Λ : R −→ End(V ,+).

Corollary

For any f , g ∈ R = A[t;S ,D] and any pseudo-linear
transformation T we have: (fg)(T ) = f (T )g(T ).
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Example

For a ∈ A, Ta ∈ End(A,+) is defined by

Ta(x) = S(x)a + D(x) ∀x ∈ V .

1 T0 = D, T1 = S + D.
2 For B ∈ Mn(A) we can define 2 different PLT’s

TB : An −→ An : x 7→ S(x)B + D(x)
T ′
B : Mn(A) −→ Mn(A) : C 7→ S(C )B + D(C )
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For a ∈ A and c invertible in A we define
ac = S(c)ac−1 + D(c)c−1 For a ∈ A, we also define

∆(a) = {ac | c ∈ U(A)}, CS ,D(a) = {c ∈ A | acc = ac}

Link between ker f (Ta) and (right) roots of f (t) ?

Theorem

(a) f (Ta)(1) = f (a).

(b) For f , g ∈ R, fg(a) = f (Ta)(g(a)).

(c) For a, c ∈ A with c ∈ U(A), we have (t − b)c = S(c)(t − a)
where b = ac).

(d) CS ,D is a ring.

(e) Ta is left CS ,D(a)-linear.
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We define
E (f , a) := ker f (Ta)

If A = K is a division ring we have

E (f , a) = {0 6= b ∈ K | f (ab) = 0} ∪ {0}

K a division ring. a ∈ K , R = K [t;S ,D], K a division ring.
∆(a) := {ac = S(c)ac−1 + D(c)c−1 | 0 6= c ∈ K}.

Theorem

Let f (t) ∈ R = K [t; S ,D] be of degree n. We have

(a) The roots of f (t) belong to at most n conjugacy classes, say
∆(a1), . . . ,∆(ar ); r ≤ n (Gordon Motzkin in ”classical” case).

(b)
∑r

i=1 dimCi
ker f (Tai ) ≤ n, where

Ci = C (ai ) := {0 6= x ∈ K | axi = ai} ∪ {0}
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Theorem

let p be a prime number, Fq a finite field with q = pn elements, θ
the Frobenius automorphism (θ(x) = xp). Then:

a) There are p distinct classes of θ-conjugation in Fq.

b) 0 6= a ∈ Fq we have C θ(a) = Fp and C θ(0) = Fq.

c) R = Fq[t; θ],

G (t) := [t − a | a ∈ Fq]l = t(p−1)n+1 − t

. We have RG (t) = G (t)R.

The polynomial G (t) in the above theorem is the analogue of
xq − x ∈ Fq[x ].
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Untwisting, I

1 If S = Inn(u), u ∈ U(A), A[t; Ia;D] = A[u−1t;D]

2 If there exists c ∈ Z (a), the center of A, such that
u := c − S(c) ∈ U(A) then A[t; S ,D] = A[t − d ;S ], where
d = u−1D(c).

For a prime p and an integer i ≥ 1, we define

[i ] := pi−1
p−1 = pi−1 + pi−2 + · · ·+ 1 and put [0] = 0.

For n ≥ 1 we denote q = pn. Let us introduce the following subset
of Fq[x ]:

Fq[x []] := {
∑
i≥0

αix
[i ] ∈ Fq[x ]}

A polynomial belonging to this set will be called a [p]-polynomial.
We extend θ to the ring Fq[x ] and put θ(x) = xp i.e. θ(g) = gp

for all g ∈ Fq[x ]. We thus have R := Fq[t; θ] ⊂ S := Fq[x ][t; θ].
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Untwisting, II

Considering f ∈ R := Fq[t; θ] as an element of Fq[x ][t; θ] we can
evaluate f at x . Denote f [][x ] ∈ Fq[x ] i.e. f (t)(x) = f [](x).

Theorem

Let f (t) =
∑n

i=0 ai t
i be a polynomial in

R := Fq[t; θ] ⊂ S := Fq[x ][t; θ]. With the above notations we
have:

1) For any h = h(x) ∈ Fq[x ], f (h) =
∑n

i=0 aih
[i ].

2) {f []|f ∈ R = Fq[t; θ]} = Fq[x []].

3) For i ≥ 0 and h(x) ∈ Fq[x ] we have T i
x(h) = hp

i
x [i ].

4) For any h(t) ∈ R = Fq[t; θ], f (t) ∈ Rh(t) if and only if
f [](x) ∈ Fq[x ]h[](x).
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Corollary

A polynomial f (t) ∈ Fq[t; θ] is irreducible if and only if its
attached [p]-polynomial f [] ∈ Fq[x []] ⊂ Fq[x ] has no non trivial
factor belonging to Fq[x []].
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Examples

Consider F4 = {0, 1, a, 1 + a} where a2 + a + 1 = 0.
θ(a) = a2 = a + 1; θ(a + 1) = (a + 1)2 = a.

a) f (t) = t3 + a ∈ R = F4[t; θ], we compute
f [] = x7 + a ∈ F4[x ]. Since a7 + a = 0, a is also a root of
t3 + a and t3 + a = (t2 + at + 1)(t + a) in R. We have
(t2 + at + 1)[] = x3 + ax + 1 ∈ F4[x ] is irreducible. We
conclude that t3 + a = (t2 + at + 1)(t + a) is a factorisation
into irreducible polynomials.

b) Consider f (t) = t4 + (a+ 1)t3 + a2t2 + (1 + a)t + 1 ∈ F4[t; θ].
f [] = x15+(a+1)x7+(a+1)x3+(1+a)x+1 = (x12+ax10+x9+
(a+1)x8+(a+1)x5+(a+1)x4+x3+ax2+x +1)(x3+ax +1)
The last factor corresponds to t2 + at + 1 ∈ F4[t; θ] is
irreducible in F4[t; θ]. We then easily conclude that
f (t) = (t2 + t + 1)(t2 + at + 1) is a decomposition of f (t)
into irreducible factors in F4[t; θ].
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One more example:
Let us consider the polynomial
f (t) = t5 + at4 + (1 + a)t3 + at2 + t + 1. Its attached
[p]-polynomial is x31 + ax15 + (1 + a)x7 + ax3 + x + 1. It is easy
to remark that a is a root and we get f (t) = q1(t)(t + a) in
F4[t; θ] where q1(t) = t4 + (a + 1)(t2 + t + 1). The [p]-polynomial
attached to q1(t) is x15 + (a + 1)(x3 + x + 1). Again we get that a
is a root and we obtain that q1(t) = (q2(t))(t + a) in F4[t; θ]
where q2(t) = t3 + (a + 1)t2 + at + a. The [p]-polynomial
attached to q2(t) is x7 + (a + 1)x3 + ax + a. Once again a is a
root and we have q2(t) = (t2 + t + 1)(t + a). Since t2 + t + 1 is
easily seen to be irreducible in F4[t; θ], we have the following
factorization of our original polynomial:
f (t) = (t2 + t + 1)(t + a)3. We can also factorize f (t) as follows:
f (t) = (t + a + 1)(t + 1)(t + a)(t2 + (a + 1)t + 1).
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Classical codes, I

Let A be a set and n ∈ N. A code of length n c is a subset
C ⊆ An.
Classically, A = Fq. The code is linear if C is a subspace of Fn

q.
For a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) ∈ C defne
d(a, b) = |{i | ai 6= bi}|.
The minimal distance of C is d = dC = min{d(a, b)|a, b ∈ C}.
Such a code can correct up to bd−12 c errors.
Fn
q has a structure of Fq[x ] module via

x .(a1, . . . , an) = (an, a1, . . . , an−1) and as such is isomorphic to
Fq[x ]/(xn − 1).

A linear code C is cyclic if
(a1, a2, . . . , an) ∈ C ⇒ (an, a1, . . . , an−1) ∈ C . C is then a Fq[x ]
submodule of Fn

q and annFq [x]C = (X n − 1). Hence C is
isomorphic to a submodule of Fq[x ]/(xn − 1) and there exists
g(x) =

∑r
i=0 aix

i ∈ Fq[x ] dividing xn − 1 such that
C ∼= g(x)Fq[x ]/(xn − 1).
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Classical codes, II

The code C is of dimension k = n − r and a generating matrix
G ∈ Mk,n(Fq) for C is then of the form:

G =

 a0 a1 . . . ar 0 . . . 0 0
0 a0 . . . ar−1 ar 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .

 ∈ Mn−r ,n(Fq).

Definition

1 C⊥ := {x ∈ Fn
q | x .c = 0, ∀c ∈ C}.

2 For h(x) =
∑l

i=0 hix
i the reciprocal polynomial is

h∗(x) = x lh( 1
x ).

If C is cyclic genearted by g(x) and h(x) is such that
g(x)hx) = xn − 1 then C⊥ is also cyclic with generating
polynomial h∗(x).
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Skew codes, I

Let A be a ring, S ,D be an endomorphism and a S-derivation of A
respectively.

Proposition

Let f (t) ∈ R = A[t;S ,D] be a monic polynomial of degree n > 0.
The map ϕ : R/Rf (t) −→ An given by
ϕ(p + Rf ) = p(Tf )(1, 0, . . . , 0) is a bijection.

The above bijection endows An with a left R = A[t;S ,D]-module
structure.
Let us remark that if (a0, a1, . . . , an−1) ∈ An then
ϕ(

∑n−1
i=0 ai t

i + Rf ) = (a0, . . . , an−1). Notice also that the practical
effect of this proposition is a way of computing the remainder of
the euclidean right division by f (t).
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Skew codes, II

Definitions

Let f (t) ∈ R = A[t;S ,D] be monic. C = ϕ(Rg/Rf ) is called a
cyclic (f , S ,D)-code ( ϕ is defined on the previous slide). So
C ⊆ An consists of the coordinates of the elements of Rg/Rf in
the basis {1, t, . . . , tn−1} for some right monic factor g(t) of f (t).

Theorem

Let g(t) := g0 + g1t + · · ·+ gr t
r ∈ R be a monic polynomial

(gr = 1). With the above notations we have

(a) The code corresponding to Rg/Rf is a free left A-module of
dimension n − r where deg(f ) = n and deg(g) = r .

(b) If v := (a0, a1, . . . , an−1) ∈ C then Tf (v) ∈ C .

(c) The rows of the matrix generating the code C are given by
(Tf )k(g0, g1, . . . , gr , 0, . . . , 0), for 0 ≤ k ≤ n − r − 1.
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Examples

A = Fpn stands for a finite field.

(1) If σ = Id ., δ = 0, f = tn − 1 and f = gh
(b) gives the cyclicity condition for the code.
(c) we get the standard generating matrix of a cyclic code.

(2) If σ = Id ., δ = 0, f = tn − λ and f = gh
(b) gives the constacyclicity condition for the code.
(c) we get the standard generating matrix of a constacyclic
code.

(3) f = tn − 1 ∈ R = Fq[t; θ] (θ = ”Frobenius”) and f = gh ∈ R
(b) gives the θ-cyclicity condition for the code.
(c) gives the standard generating matrix of a θ-cyclic code.

(4) If σ = θ, δ = 0, f = tn − λ and f = gh.
(b) gives the θ-constacyclicity condition for the code.
(c) gives the standard generating matrix of a θ-constacyclic
code.
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Examples

(5) If A = Fq is a finite field and θ ∈ Aut(Fq) we get the skew
codes defined in several papers.

(6) Let R be the Ore extension R := Fp[x ]/(xp − 1)[t; d
dx ], where

d
dx denotes the usual derivation. f (t) = tp − 1 ∈ Z (R). Let
us fix p = 5. In this case x and x + x4 are roots of t5 − 1 and
one compute that the polynomial g(t) := t2 − 2xt + x2 − 1 is
the least left common multiple of t − x and t − (x + x4) in R.
g(t) is a right (and hence left, since f (t) is central) factor of
t5 − 1. The generating matrix of the cyclic (id ., d

dx )-code
corresponding to the left module Rg/Rf is given by:

G :=

x2 − 1 −2x 1 0 0
2x x2 + 2 −2x 1 0
2 4x x2 −2x 1
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Lemma

Let f , g , h, h′ ∈ R be monic polynomials such that f = gh = h′g .
Then

(a) gR = annR(h′ + fR) and
gR/fR = {p + fR | p ∈ annR(h′ + fR)}.

(b) Rg = annR(h + Rf ) and
Rg/Rf = {p + Rf | p ∈ annR(h + Rf )}.

Andre Leroy (Joint work with A. Alahmadi, A. Boulagouaz, A. Cherchem )Coding and Ore extensions



Plan

Theorem

Let f , g , h, h′ ∈ R be monic polynomials such that f = gh = h′g
and let C denote the code corresponding to the cyclic module
Rg/Rf . Then the following statements are equivalent:

(i) (c0, . . . , cn−1) ∈ C ,

(ii) (
∑n−1

i=0 ci t
i )h(t) ∈ Rf ,

(iii)
∑n−1

i=0 ciT
i
f (h) = 0,

(iv)
∑n−1

j=0 (
∑n−1

i=j ci f
i
j (h))Nj(Cf ) = 0.

Andre Leroy (Joint work with A. Alahmadi, A. Boulagouaz, A. Cherchem )Coding and Ore extensions



Plan

In view of the above it seems natural to set the following definition.

Definition

For a left (resp. right) linear code C ⊆ An, we say that a matrix H
is a control matrix if C = lann(H) (resp. C = rann(H)).

Corollary

For a code C determined by the left R-module Rg/Rf such that
there exist monic polynomials h, h′ ∈ R with f = gh = h′g the
matrix H whose i th row is T i−1

f (h), for 1 ≤ i ≤ deg(f ) is a control
matrix.
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The above Theorem and Corollary give back the control matrix of
classical cyclic and skew cyclic codes.

Examples

(1) Let f (t) = tn − 1 ∈ R = F [t], where F is a (finite) field and
let g(t), h(t) ∈ R be such that tn − 1 = g(t)h(t) = h(t)g(t).
We write h(t) =

∑k
i=0 hi t

i . For v = (v0, . . . , vn−1) ∈ kn, the
action of T i

f is given by T i
f (v) = (v0, . . . , vn−1)C i , where C is

the companion matrix associated to the polynomial tn − 1.
The control matrix associated to C corresponding to Rg/Rf
defined above gives back the classical control matrix.
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Examples

(2) Let A,S ,D be a ring, an automorphism and a S-derivation.
Assume tn − 1 = gh = h′g , where g , h, h′ ∈ R are monic. Let
us write h(t) =

∑k
i=0 hi t

i , with hk = 1. The PLT defined by
f (t) = tn − 1 is the map Tf = TC , where C is the companion
matrix associated to tn − 1. The control matrix H for the
code C determined by the module Rg/Rf :

H =



h0 h1 . . . hk 0 0 0
0 S(h0) . . . S(hk−1) S(hk) 0 0
0 0 S2(h0) . . . . . . . . . . . .
... . . . . . . . . . . . . 0
0 0 . . . . . . . . . . . . Sn−k(hk)
...

... ∗ 0 ∗ ∗

∗ ∗
... ∗ h0 ∗

∗ ∗ ∗ 0 ∗ ∗ . . .
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Examples

So the last n − k columns are in echelon form and hence linearly
independent. The dimension of the code being equal to k, in good
cases (e.g. if the ring is a field), this means that they define a
control matrix as well. The transpose of these last columns is
exactly the control matrix obtained by other authors in the case
when A is a commutative field.
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Examples

(3) Let A be a ring and δ be a (usual) derivation on A. For a ∈ A
we consider the polynomial f (t) := (t2 − a)2 ∈ A[t; δ] and put
g = h = t2 − a. We have
f (t) = t4 − 2at2 − 2δ(a)t − δ2(a) + a2. We get

G = H =


−a 0 1 0
−δ(a) −a 0 1
−a2 0 a 0

aδ(a)− δ(a)a −a2 δ(a) a


One can check that gH = (−a, 0, 1, 0)H = (0, 0, 0, 0). Set
H1,H2,H3,H4 to represent the different columns of H, then
H1 + H3(−a) + H4δ(a) = 0 ∈ A4 and H2 + aH4 = 0 ∈ A4. Let
H ′ be the 4× 2 matrix H ′ = (H3,H4). We get that
lann(H ′) = lann(H) = C . This shows that H ′ is a control
matrix of the code C .
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Examples

(4) Consider R := F5[x ]/(x5 − 1)[t; d
dx ], and f (t) = t5 − 1. This

last polynomial is central and can be factorized as
f (t) = g(t)h(t) = h(t)g(t) where g(t) := t2 − 2xt + x2 − 1
and h(t) = t3 + 2xt2 + (3x2 + 2)t + (4x3 + 3x). The code we
are considering corresponds to the module Rg(t)/(t5 − 1).
The rows of the control matrix are given by T i

f (h), 0 ≤ i ≤ 4.
The first row is thus h the second row is hCf + d

dx (h). Here
Cf is the companion matrix of t5 − 1 and acts as cyclic
permutation. Hence we get

H =


4x3 + 3x 3x2 + 2 2x 1 0
2x2 + 3 4x3 + 4 3x2 + 4 2x 1
4x + 1 4x2 + 2 4x3 3x2 + 1 2x
2x + 4 2x + 1 x2 + 2 4x3 + 6x 3x2 + 3

3x2 2x + 1 4x + 1 3x2 + 3 4x3 + 2x
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Boucher, Ulmer

In a series of papers D. Boucher and F. Ulmer studied codes
defined by skew polynomials (they initiated this kind of codes).
They computed the distance of these codes and showed that they
are sometimes better than usual codes.
In the table, n is the length of the codes over F4 = F2(α) and
corresponds to the degree of f ∈ R = F4[t; θ]. The integer r is the
degree of g , n − r = dim(C ) = Rg/Rf .
Cd means that the best known linear n, n − r ]4 code is of minimal
distance d andis a cyclic codes.
C θd means that the best known linear n, n − r ]4 code is of minimal
distance d and is a an (ideal-) θ cyclic code.
Md means that the best known linear n, n − r ]4 code is of minimal
distance d and is a module θ-codes.
A negative entry −j indicates that the best module θ-code has a
distance d − j , where d is the distance of the best known linear
n, n − r ]4 code.
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Skew exponents

Lemma

f a nonzero divisor in a ring R. Suppose fR = Rf and
|R/Rf | <∞. Let g ∈ R such that |R/Rg | <∞ and

rg : R/Rf
.g→ R/Rf is 1− 1.

∃e ∈ N such that f e − 1 ∈ Rg

Examples

1) R = Fq[x ], f (x) = x , g(x) ∈ Fq[x ] s.t. g(0) 6= 0. We obtain
the classical exponent of g (q = pn, p prime).

2) R = Fq[t; θ] where θ(a) = ap for a ∈ Fq; f (t) = t, g(t) ∈ R
such that g(0) 6= 0. There exists e = e(g) such that
g(t) | te − 1 in R.

3) R = Fq[x ]/(xp)[t; d
dx ]; f = tp; g = g(t) monic with

Rg + Rtp = R. There exists e such that g | tpe − 1.
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Skew exponents
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Let us notice that for any a ∈ Fq, g(t) = t − a is such that
t − a|d te − 1 implies that (te − 1)(a) = 0, i.e.
Se−1(a)Se−1(a) . . . S(a)a = 0. On introduit

Definition

G a group, σ ∈ Aut(G ).

1) g ∈ G , n ∈ N Nn(g) = σn−1(g)σn−2(g) · · ·σ(g)g .

2) ordσ(g) is the smallest l such that Nl(g) = 1 (if it exists).

Lemma

G a finite group, g ∈ G

a) Nl+s(g) = σl(Ns(g))Nl(g).

b) if ordσ(g) = l then (Ns(g) = 1⇔ l/s).

d) If σl = id . then σ(Nl(g)) = gNl(g)g−1.

e) σl = id . then ordσ(g)|l · ord(Nl(g)).
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Proposition

g , g1, . . . gs monic polynomials in Fq[t; θ] (q = pn) such that
g(0) 6= 0 6= gi (0), for i = 1, . . . , s. Then

a) g(t)|r t l − 1⇔ e(g)|l .
b) g |rh⇒ e(g)|e(h).

c) e([g1, . . . , gs ]l) = [e(g1), . . . , e(gs)].

d) e(g(t)) = ordθ(Cg ) where Cg ∈ GLr (Fq) is the companion
matrix of g(t).

e) If α ∈ Fq
∗

is such that t − α|rg(t) in F q[t; θ] and g(t) is
irreducible in Fq[t; θ], then e(g) = ordθ(α).

f) θ can be extended to Fq[t; θ] via θ(t) = t
e(g(t)) = e(θ(g(t)) for g(t) ∈ Fq[t; θ].

g) h(t) = [g(t), θ(g(t)), . . . , θn−1(g(t))]l then e(h(t)) = e(g(t))
and θ(h(t)) = h(t).

h) α ∈ F ∗pn s.t. ord(α) = pn − 1 then e(t − α) = (p − 1)n.
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Corollary

α ∈ Fq, q = pn, θ = Frobenius, θn = id. e(t − α) | n(p − 1) and
G0(t) := [t − α | α ∈ F ∗q ]l then G0(t) = tn(p−1) − 1 is central in
R = Fq[t;σ].

Examples

1 er (t − α) = el(t − α) (right and left exponents)

2 In F4[t; θ] where F4 = {0, 1, a, a2} a2 = 1 + a
er (t3 + a2t2 + at + a) 6= el(t

3 + a2t2 + at + a).

Andre Leroy (Joint work with A. Alahmadi, A. Boulagouaz, A. Cherchem )Coding and Ore extensions



Plan

Final remarks

Let us remark the following commutation.

Proposition

Let A be a finite ring, S ∈ Aut(A). For any n ∈ N, g , hinR
tn − 1 = gh⇔ tn − 1 = hg .

Other works around codes with skew polynomial rings Pumpluen’s
papers.
Noncommutative Frobenius rings play a crucial role in coding
theory (see e.g. J. Wood).
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